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● What is an adversarial attack?

○ How to produce strong adversarial examples?

■ Fool model with high confidence and only small perturbation

● How to defend against them?

○ Train such that no adversarial or difficult to find examples
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● Saddle point” min/max optimization problem

■ Inner Maximization

● Adversarial version of given input x that achieves high loss

■ Outer Minimization

● Find model parameters such that adversarial loss of inner attack 

problem is minimized
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● Saddle point formulation

Outer Minimization

Model parameters that 
minimize the adversarial 

loss of inner attack
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● Saddle point formulation

● Fast Gradient Sign Method (FGSM)
○ One-step scheme

● Projected Gradient Descent (PGD)
○ Multi-step variant
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● Saddle point formulation

● Unifying view on adversarial robustness

● Parameters yielding vanishing risk corresponds to robust model 
under adversarial attacks

○ Small loss for all allowed perturbations → Guarantee!



Defence: Adversarial Training

Adversarial Examples & Robustness EvaluationShreyash Arya 68



Defence: Adversarial Training

Adversarial Examples & Robustness EvaluationShreyash Arya 69

● Increase variability in the training dataset



Defence: Adversarial Training

Adversarial Examples & Robustness EvaluationShreyash Arya 70

● Increase variability in the training dataset

● Adding FGSM/PGD inputs to the training dataset



Defence: Adversarial Training

Adversarial Examples & Robustness EvaluationShreyash Arya 71

● Increase variability in the training dataset

● Adding FGSM/PGD inputs to the training dataset

○ Examples can look identical to human eye



Defence: Adversarial Training

Adversarial Examples & Robustness EvaluationShreyash Arya 72

● Increase variability in the training dataset

● Adding FGSM/PGD inputs to the training dataset

○ Examples can look identical to human eye

● Approach relies on increased network capacity



Defence: Adversarial Training

Adversarial Examples & Robustness EvaluationShreyash Arya 73

● Increase variability in the training dataset

● Adding FGSM/PGD inputs to the training dataset

○ Examples can look identical to human eye

● Approach relies on increased network capacity

○ Shallower models does not lean 

perturbations



Defence: Adversarial Training

Adversarial Examples & Robustness EvaluationShreyash Arya 74

● Increase variability in the training dataset

● Adding FGSM/PGD inputs to the training dataset

○ Examples can look identical to human eye

● Approach relies on increased network capacity

○ Shallower models does not lean 

perturbations

○ Should consider bias-variance trade-off 



Defence: Adversarial Training

Adversarial Examples & Robustness EvaluationShreyash Arya 75

● Increase variability in the training dataset

● Adding FGSM/PGD inputs to the training dataset

○ Examples can look identical to human eye

● Approach relies on increased network capacity

○ Shallower models does not lean 

perturbations

○ Should consider bias-variance trade-off 



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 76



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 77

● GOAL: Towards universally robust networks



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 78

● GOAL: Towards universally robust networks

○ Small inner loss → Guarantee against first-order adversaries (gradient dependent)



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 79

● GOAL: Towards universally robust networks

○ Small inner loss → Guarantee against first-order adversaries (gradient dependent)

○ But problem: Non-concave inner maximization and non-convex outer minimization 



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 80

● GOAL: Towards universally robust networks

○ Small inner loss → Guarantee against first-order adversaries (gradient dependent)

○ But problem: Non-concave inner maximization and non-convex outer minimization 

■ Tractable solution → Local maxima well concentrated in x + δ



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 81

● GOAL: Towards universally robust networks

○ Small inner loss → Guarantee against first-order adversaries (gradient dependent)

○ But problem: Non-concave inner maximization and non-convex outer minimization 

■ Tractable solution → Local maxima well concentrated in x + δ

■ PGD being ultimate first-order adversary



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 82

● GOAL: Towards universally robust networks

○ Small inner loss → Guarantee against first-order adversaries (gradient dependent)

○ But problem: Non-concave inner maximization and non-convex outer minimization 

■ Tractable solution → Local maxima well concentrated in x + δ

■ PGD being ultimate first-order adversary

■ Robust against wide range of attacks 



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 83

● GOAL: Towards universally robust networks

○ Small inner loss → Guarantee against first-order adversaries (gradient dependent)

○ But problem: Non-concave inner maximization and non-convex outer minimization 

■ Tractable solution → Local maxima well concentrated in x + δ

■ PGD being ultimate first-order adversary

■ Robust against wide range of attacks 

● Provided sufficiently large networks



Experiments

Adversarial Examples & Robustness EvaluationShreyash Arya 84

● GOAL: Towards universally robust networks

○ Small inner loss → Guarantee against first-order adversaries (gradient dependent)

○ But problem: Non-concave inner maximization and non-convex outer minimization 

■ Tractable solution → Local maxima well concentrated in x + δ

■ PGD being ultimate first-order adversary

■ Robust against wide range of attacks 

● Provided sufficiently large networks

○ Datasets: MNIST and CIFAR-10
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● Setting: Cross-entropy loss + PGD

● Outcomes:
○ Adversarial loss plateaus after small number of iterations
○ Optimization trajectories and final loss are fairly clustered (especially on CIFAR-10)
○ Final loss on adversarially trained network is significantly smaller
○ → Robust against first-order adversaries (gradient of loss wrt to input).

● Robustness guarantee even stronger from black-box and transfer attacks
○ No direct access to target network
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● Capacity alone helps

● FGSM adversaries don’t increase robustness (for large ε)

● Weak models (small capacity + PGD) fail to lean non-trivial classifiers

● Loss decreases with capacity increase

● More capacity and stronger adversaries decrease transferability
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● FGSM adversaries don’t increase robustness

● For small networks with strong adversary (PGD), network does not learn

● PGD adversarial model decreases value of saddle point (loss) with increase in capacity

● More capacity and stronger adversaries decrease transferability
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● Special case of gradient masking
○ Make the gradients more difficult to interpret or compute accurately

● Breaking the gradient or generated unintentionally

● Types of obfuscated gradients:
○ Shattered: Defense is non-differentiable

■ introduces numeric instability or nonexistent/incorrect gradient.

○ Stochastic: Randomized defences

■ either network is random or the inputs are randomly transformed causing randomized 
gradients

○ Exploding and Vanishing Gradients: Defences with multiple iterations of neural network 
evaluation
■ Feeding output of one computation as input to next
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● One-step attacks perform better than iterative attacks

○ Iterative attack stuck on local minimum

● Black-box attacks are better than white-box attacks

○ Black-box is subset of white-box 

● Unbounded attacks do not reach 100% success

○ Unbounded attacks should cause 0% robustness 

● Random sampling finds adversarial examples

○ Brute forcing should not work

● Increasing distortion bound does not increase success

○ Increasing the allowed perturbation range
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● Address flaws in past adversarial defence techniques relying on gradient masking

● Describe the characteristic behaviour of defence exhibiting the effect of obfuscated gradients

● Experimental proof for successful attacks on past defences

● Techniques to prevent circumvention of methods relying on gradient masking
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● Attack defences where gradients are not readily available

● Solving vanishing/exploding gradients:

○ Reparameterization

Remapping!
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● Thermometer encoding

○ Breaking the linearity which causes adversarial examples to exist

○ Logit-Space Projected Gradient Ascent (LS-PGA) attack on discrete space

● ! Black box performance is worse than white box
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● Input Transformation

○ Image cropping, rescaling, bit-depth reduction, JPEG compression, total variance minimization 

and image quilting

○ Black box, ResNet-50, l
2
 dissimilarity, 60% top-1 defence accuracy

● Bypass!

○ EOT: Image cropping and scaling

○ BPDA: Bit-depth reduction, JPEG compression

○ EOT + BPDA: total variance minimization and image quilting

■ Accuracy drops to 0% under strongest defence with small perturbation budget
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● Stochastic Activation Pruning (SAP)

○ Dropout with weighted distribution 

○ ! Used single-step in the gradient direction evaluation

● Attack:

● Accuracy drop to 9% with ε = .015 and 0% at ε = 0.031
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● Mitigating Through Randomization

○ Adding randomization layer before input to classifier

○ Attack on original, fixed randomization and ensemble

○ ! Claims that stronger attack would be computationally expensive 

● Attack:

○ EOT optimizing over distribution of transformations

● Accuracy drop to 32.8% with ε = .0031 under l-infinity norm
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● PixelDefend

○ PixelCNN to project potential adversarial example back to data manifold before input

○ Argue that adversarial examples lie in low-probability region

■ PixelDefend “purifies” image by finding highest probability example in ε-ball of input

○ With a maximum l∞ perturbation of  ε = 0.031, PixelDefend claims 46% accuracy (with a vanilla 

ResNet classifier

○ ! Dismiss attacks with difficult differentiation due to vanishing gradients and computation cost

● Attack: BPDA to approximate gradient

● Reduce accuracy to 9%
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● Defence-GAN

○ Similar to PixelDefend; use of GANs

● Attack with BPDA with 45% success rate
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1. Define a (realistic) threat model

a. Model architecture and model weights

b. Training algorithm and training data

c. Test time randomness (chosen values or distribution)

d. Query access (logits or top label)

● Should not have unrealistic constraints
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2. Make specific, testable claims

a. Accuracy, bound, budget, threat model

b. State if model evaluated under different threat model

c. Code release

3. Evaluate against adaptive attacks

a. Future attacks

b. After defence is specified, adversary attacks again with only restriction of threat model

c. Multiple attacks evaluation; mean over best attack per image
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● Highlight limitations of gradient obfuscation as a standalone mechanism

● Adaptive attacks can break defence mechanisms

● Comprehensive defence strategies

○ Adversarial defence, ensemble methods or input preprocessing

● Evaluated different attacks

○ Strongest first order attacks have lower success to adaptive attacks

● Guidelines to improve defence mechanisms
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● Experimental scope is limited

● Dependency on data, model and task

● Attack complexity can vary depending on task complexity

● Combination and comparison with other attacks is not mentioned

● Extensive insights to alternate defences / mitigation strategies not provided
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1. "Stealthy Backdoors as Compression Artifacts" by Liu et al. (2021)
● Explores the use of obfuscated gradients as a way to hide backdoor triggers in deep neural networks
● Demonstrates how attackers can leverage obfuscated gradients to create stealthy backdoors in models

2. "The Limitations of Model-Agnostic Attacks" by Grosse et al. (2019)
● Investigates the limitations of obfuscated gradients and other model-agnostic attacks
● Provides insights into the challenges of crafting effective adversarial examples in scenarios where the attacker 

has limited knowledge of the target model

3. "On the Robustness of Machine Learning Models to Universal Adversarial Perturbations" by Moosavi-Dezfooli et al. 
(2020)
● Explores the vulnerability of machine learning models, including those protected by gradient obfuscation, to 

universal adversarial perturbations.
● Investigates the robustness of models against perturbations that are imperceptible to human perception but 

can cause misclassification
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● Adversarial Training

● Cascade Adversarial Training

○ Train first model → generate adversarial examples (iterative method) on the model → add to 

train set → train second model on augmented dataset (using single step method)


