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Generating an Adversarial Attack

+.007 x

“oanda” noise “gibbon”

577% confidence 99.3% confidence
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e \What is an adversarial attack?
o How to produce strong adversarial examples?
m Fool model with high confidence and only small perturbation
e How to defend against them?

o Train such that no adversarial or difficult to find examples
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Problem Statement

e Saddle point” min/max optimization problem
m Inner Maximization
e Adversarial version of given input x that achieves high loss
m Outer Minimization
e Find model parameters such that adversarial loss of inner attack

problem is minimized
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e Original model goal is to solve
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Defining an Attack

e Saddle point formulation

mgmp(@), where p(0) = E(,,).p max L{0;x+8,1)

Outer Minimization

Model parameters that
minimize the adversarial
loss of inner attack
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e Fast Gradient Sign Method (FGSM)
o One-step scheme

x +esgn(V,L(6,x,y))

e Projected Cradient Descent (PGD) K1 =T, s (x' + asgn(V,L(6,x,v)))
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e Saddle point formulation

mgmp(@), where p(0) = E(,,).p .I?eé}gx L(0,x+ 5,3/)'

e Fast Gradient Sign Method (FGSM)
o One-step scheme

x +esgn(V,L(6,x,y))

e Projected Gradient Descent (PGD)

o Multi-step variant K =Tl (x' +asgn(VLL(0,x,y)))
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Defining an Attack Il =

e Saddle point formulation

mgmp(@), where p(0) =E(,,).p max L0, % +8,7)

e Unifying view on adversarial robustness

e Parameters yielding vanishing risk corresponds to robust model
under adversarial attacks

o Small loss for all allowed perturbations — Guarantee!
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Defence: Adversarial Training

® Increase variability in the training dataset

A
e Adding FGCSM/PGD inputs to the training dataset o overfitting
o Examples can look identical to human eye
generalization nd
error
e Approach relies on increased network capacity , A
bias ' " variance
o Shallower models does not lean e o
T e, kit TP C—. ) S
rae— '
perturbations L » capacity
optimal capacity

o Should consider bias-variance trade-off
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Experiments

e GOAL: Towards universally robust networks
o Small inner loss — Guarantee against first-order adversaries (gradient dependent)

o But problem: Non-concave inner maximization and non-convex outer minimization
m Tractable solution — Local maxima well concentrated in x +
m PGD being ultimate first-order adversary
m Robust against wide range of attacks
e Provided sufficiently large networks

o Datasets: MNIST and CIFAR-10
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(a) MNIST (b) MNIST (c) CIFAR10 (d) CIFAR10

Standard training Adversarial training  Natural training ~ Adversarial training

Figure 1: Cross-entropy loss values while creating an adversarial example from the MNIST and
CIFAR10 evaluation datasets. The plots show how the loss evolves during 20 runs of projected
gradient descent (PGD). Each run starts at a uniformly random point in the /-ball around the
same natural example (additional plots for different examples appear in Figure 11). The adversarial
loss plateaus after a small number of iterations. The optimization trajectories and final loss values
are also fairly clustered, especially on CIFAR10. Moreover, the final loss values on adversarially
trained networks are significantly smaller than on their standard counterparts.
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Landscape of Adversarial Examples

Loss value

= N W A U,

0 25 50 75 100 O 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Iterations Iterations Iterations Iterations

(a) MNIST (b) MNIST (c) CIFAR10 (d) CIFAR10
Standard training Adversarial training  Natural training ~ Adversarial training

e Setting: Cross-entropy loss + PGD

e Qutcomes:

o Adversarial loss plateaus after small number of iterations

o  Optimization trajectories and final loss are fairly clustered (especially on CIFAR-10)
o Final loss on adversarially trained network is significantly smaller

o — Robust against first-order adversaries (gradient of loss wrt to input).

e Robustness guarantee even stronger from black-box and transfer attacks
o No direct access to target network
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MNIST

log(frequency)
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CIFAR10

log(frequency)

0 25 50 75 100 O 25 50 75 100 O 25 50 75 100 O 25 50 75 100 O 25 50 75 100
Loss value Loss value Loss value Loss value Loss value

Figure 2: Values of the local maxima given by the cross-entropy loss for five examples from the
MNIST and CIFARI10 evaluation datasets. For each example, we start projected gradient descent
(PGD) from 10° uniformly random points in the /-ball around the example and iterate PGD until
the loss plateaus. The blue histogram corresponds to the loss on a standard network, while the red
histogram corresponds to the adversarially trained counterpart. The loss is significantly smaller for
the adversarially trained networks, and the final loss values are very concentrated without any
outliers.
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MNIST
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Capacity scale Capacity scale Capacity scale Capacity scale
CIFAR10
Simple‘ Wide Simp1e| Wide Simple| Wide Simplel Wide
Natural 92.7% |95.2% 87.4% [90.3% 79.4% |87.3% 0.00357{0.00371
FGSM  27.5% [32.7% 90.9% (95.1% 51.7% |56.1% 0.0115 |0.00557
PGD 0.8% |3.5% 0.0% | 0.0% 43.7% |45.8% 1.11 |0.0218
(a) Standard training (b) FGSM training (c) PGD training (d) Training Loss

Figure 4: The effect of network capacity on the performance of the network. We trained MNIST and
CIFAR10 networks of varying capacity on: (a) natural examples, (b) with FGSM-made adversarial
examples, (c) with PGD-made adversarial examples. In the first three plots/tables of each dataset,
we show how the standard and adversarial accuracy changes with respect to capacity for each
training regime. In the final plot/table, we show the value of the cross-entropy loss on the
adversarial examples the networks were trained on. This corresponds to the value of our saddle
point formulation (2.1) for different sets of allowed perturbations.
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Average loss

MNIST
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CIFAR10

Simple ‘ Wide Simp1e| Wide

Natural 92.7% [95.2% 87.4% (90.3%
FGSM 27.5% (32.7% 90.9% [95.1%
PGD 0.8% |3.5% 0.0% | 0.0%

Simple| Wide

79.4% |87.3%
51.7% |56.1%
43.7% |45.8%

(a) Standard training (b) FGSM training (c) PGD training

e Capacity alone helps

e FGSM adversaries don’t increase robustness (for large €)
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Capacity scale
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0.00357|0.00371
0.0115 |0.00557
1.11 |0.0218

(d) Training Loss

e Weak models (small capacity + PGD) fail to lean non-trivial classifiers

e Loss decreases with capacity increase

e More capacity and stronger adversaries decrease transferability
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Figure 5: Cross-entropy loss on adversarial examples during training. The plots show how the
adversarial loss on training examples evolves during training the MNIST and CIFAR10 networks
against a PGD adversary. The sharp drops in the CIFAR10 plot correspond to decreases in training
step size. These plots illustrate that we can consistently reduce the value of the inner problem of
the saddle point formulation (2.1), thus producing an increasingly robust classifier.
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Adversarial Robustness - MNIST e

'Method ~ [Steps  |Restarts [Source |[|Accuracy]|

Natural - - - 98.8%
FGSM - - A 95.6%
PGD 40 1 A 93.2%
PGD 100 1 A 91.8%
PGD 40 20 A 90.4%
PGD 100 20 A 89.3%
Targeted |40 1 A 92.7%
CW 40 1 A 94.0%
CW+ 40 1 A 93.9%
FGSM - - A 96.8%
PGD 40 1 A’ 96.0%
PGD 100 20 A’ 95.7%
CW 40 | A’ 97.0%
CW+ 40 1 A’ 96.4%
FGSM - - B 95.4%
PGD 40 i B 96.4%
CW+ - - B 95.7%

Table 1: MNIST: Performance of the adversarially trained network against different adversaries
for ¢ = 0.3. For each model of attack we show the most successful attack with bold. The source
networks used for the attack are: the network itself (A) (white-box attack), an indepentenly
initialized and trained copy of the network (A’), architecture B from [29] (B).
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Adversarial Robustness - CIFAR-10 e

Method Steps  |Source ||Accuracy
Natural - - 87.3%
FGSM - A 56.1%
PGD 7 A 50.0%
PGD 20 A 45.8%
CW 30 A 46.8%
FGSM - A 67.0%
PGD 7 A 64.2%
CW 30 A 78.7%
FGSM - Agyat 85.6%
PGD 7 Ayt 86.0%

Table 2: CIFAR10: Performance of the adversarially trained network against different adversaries
for ¢ = 8. For each model of attack we show the most effective attack in bold. The source networks
considered for the attack are: the network itself (A) (white-box attack), an independtly initialized
and trained copy of the network (A’), a copy of the network trained on natural examples (A;4).
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Figure 6: Performance of our adversarially trained networks against PGD adversaries of different
strength. The MNIST and CIFAR10 networks were trained against ¢ = 0.3 and ¢ = 8 PGD /«
adversaries respectively (the training ¢ is denoted with a red dashed lines in the /s plots). In the
case of the MNIST adversarially trained networks, we also evaluate the performance of the Decision
Boundary Attack (DBA) [4] with 2000 steps and PGD on standard and adversarially trained models.
We observe that for ¢ less or equal to the value used during training, the performance is equal or
better. For MNIST there is a sharp drop shortly after. Moreover, we observe that the performance
of PGD on the MNIST /;-trained networks is poor and significantly overestimates the robustness
of the model. This is potentially due to the threshold filters learned by the model masking the loss
gradients (the decision-based attack does not utilize gradients).
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Figure 6: Performance of our adversarially trained networks against PGD adversaries of different
strength. The MNIST and CIFAR10 networks were trained against ¢ = 0.3 and ¢ = 8 PGD /«
adversaries respectively (the training ¢ is denoted with a red dashed lines in the /s plots). In the
case of the MNIST adversarially trained networks, we also evaluate the performance of the Decision
Boundary Attack (DBA) [4] with 2000 steps and PGD on standard and adversarially trained models.
We observe that for ¢ less or equal to the value used during training, the performance is equal or
better. For MNIST there is a sharp drop shortly after. Moreover, we observe that the performance
of PGD on the MNIST /;-trained networks is poor and significantly joverestimates the robustness
of the model. This is potentially due to the threshold filters learned by the model masking the loss
gradients (the decision-based attack does not utilize gradients).
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Figure 6: Performance of our adversarially trained networks against PGD adversaries of different
strength. The MNIST and CIFAR10 networks were trained against ¢ = 0.3 and ¢ = 8 PGD /«
adversaries respectively (the training ¢ is denoted with a red dashed lines in the /s plots). In the
case of the MNIST adversarially trained networks, we also evaluate the performance of the Decision
Boundary Attack (DBA) [4] with 2000 steps and PGD on standard and adversarially trained models.
We observe that for ¢ less or equal to the value used during training, the performance is equal or
better. For MNIST there is a sharp drop shortly after. Moreover, we observe that the performance
of PGD on the MNIST /;-trained networks is poor and significantly overestimates the robustness
of the model. This is potentially due to the threshold filters learned by the model masking the loss

gradients [the decision-based attack does not utilize gradients) |
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e PGD adversarial model decreases value of saddle point (loss) with increase in capacity
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e Network capacity alone increase robustness against one-step adversary
e FGSM adversaries don't increase robustness
e For small networks with strong adversary (PGD), network does not learn
e PGD adversarial model decreases value of saddle point (loss) with increase in capacity

e More capacity and stronger adversaries decrease transferability
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Cradient Masking

e Cradients of the loss function with respect to the model's input are
intentionally or unintentionally obscured or made difficult to access.
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e CGradients of the loss function with respect to the model's input are
intentionally or unintentionally obscured or made difficult to access.

Gradient masking in adversarially trained models

I" 10°

"‘"Fld_l

[3:30~4

|
Adversarifxl example

—2Non-adversarial

- 0% 7% 0  gastipant N | example ‘
SISISSASISIONR | |
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‘ “" ‘ “ “0.\ STRS SO !
5% % X LSS | 1
% 0% e LS 1.10-*
- %% n0—4 |
== 03 0.03%% —
- - 0.03
00 Direction of Direction of the
another model's adversarially _trained
Tramér et al. Ensemble Adversarial Training: Attacks and Defenses gradient model’s gradient
¢ g . 8
lllustration adapted from slides by Florian Trameér
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Obfuscated Cradients I [
e Special case of gradient masking
o Make the gradients more difficult to interpret or compute accurately
e Breaking the gradient or generated unintentionally

e Types of obfuscated gradients:
o Shattered: Defense is non-differentiable

m introduces numeric instability or nonexistent/incorrect gradient.
o Stochastic: Randomized defences

m either network is random or the inputs are randomly transformed causing randomized
gradients

o Exploding and Vanishing Gradients: Defences with multiple iterations of neural network

evaluation
m Feeding output of one computation as input to next
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e One-step attacks perform better than iterative attacks

o lterative attack stuck on local minimum

e Black-box attacks are better than white-box attacks

o Black-box is subset of white-box

e Unbounded attacks do not reach 100% success

o Unbounded attacks should cause 0% robustness

e Random sampling finds adversarial examples

o Brute forcing should not work

® Increasing distortion bound does not increase success

o Increasing the allowed perturbation range
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e Address flaws in past adversarial defence techniques relying on gradient masking
e Describe the characteristic behaviour of defence exhibiting the effect of obfuscated gradients

e Experimental proof for successful attacks on past defences
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e Address flaws in past adversarial defence techniques relying on gradient masking
e Describe the characteristic behaviour of defence exhibiting the effect of obfuscated gradients
e Experimental proof for successful attacks on past defences

e Techniques to prevent circumvention of methods relying on gradient masking
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e Attack defences where gradients are not readily available

e Straight-Through Estimator (Special case)
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Many non-differentiable defenses can be expressed as fol-
lows: given a pre-trained classifier f(-), construct a prepro-
cessor g(-) and let the secured classifier f(z) = f(g(z))
where the preprocessor g(+) satisfies g(z) ~ x (e.g., such a
g(-) may perform image denoising to remove the adversar-
ial perturbation, as in Guo et al. (2018)). If g(+) is smooth
and differentiable, then computing gradients through the
combined network f is often sufficient to circumvent the
defense (Carlini & Wagner, 2017b). However, recent work
has constructed functions g(-) which are neither smooth
nor differentiable, and therefore can not be backpropagated
through to generate adversarial examples with a white-box
attack that requires gradient signal.
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e Straight-Through Estimator (Special case)

© Many non-differentiable defenses can be expressed as fol-
lows: given a pre-trained classifier f(-), construct a prepro-
cessor g(-) and let thel secured classifier f(x) = f(g(x))
where the preprocessor ¢(-) satisfies g(z) = = (€.g., such a
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ial perturbation, as in Guo et al. (2018)). If g(+) is smooth
and differentiable, then computing gradients through the
combined network f is often sufficient to circumvent the
defense (Carlini & Wagner, 2017b). However, recent work
has constructed functions g(-) which are neither smooth
nor differentiable, and therefore can not be backpropagated
through to generate adversarial examples with a white-box
attack that requires gradient signal.
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Because g is constructed with the property that g(z) ~ =,
we can approximate its derivative as the derivative of the
identity function: V,¢g(z) ~ V,x = 1. Therefore, we can
approximate the derivative of f(g(x)) at the point Z as:

Ve f(9(x))]—s = wa(x)lx;q(i')

This allows us to compute gradients and therefore mount a
white-box attack. Conceptually, this attack is simple. We
perform forward propagation through the neural network as
usual, but on the backward pass, we replace g(-) with the
identity function. In practice, the implementation can be ex-
pressed in an even simpler way: we approximate V. f(g(x))
by evaluating V. f(x) at the point g(z). This gives us an

Adversarial Examples & Robustness Evaluation

@O
(1T
1]

UNIVERSITAT
W DES

SAARLANDES



Attack Techniques

e Attack defences where gradients are not readily available

e Straight-Through Estimator (Special case)

©)

Shreyash Arya /

Because g is constructed with the property that g(z) ~ =,
we can approximate its derivative as the derivative of the
identity function] V,¢g(z) ~ V,x = 1.|Therefore, we can

approximate the derivative ol J(g(x)) at the point Z as:

This allows us to compute gradients and therefore mount a
white-box attack. Conceptually, this attack is simple. We
perform forward propagation through the neural network as
usual, but on the backward pass, we replace g(-) with the
identity function. In practice, the implementation can be ex-
pressed in an even simpler way: we approximate V. f(g(x))
by evaluating V. f(x) at the point g(z). This gives us an

Adversarial Examples & Robustness Evaluation

@O
(1T
1]

UNIVERSITAT
W DES

SAARLANDES



Attack Techniques

e Attack defences where gradients are not readily available

e Straight-Through Estimator (Special case)

©)

Shreyash Arya /

Because g is constructed with the property that g(z) ~ =,
we can approximate its derivative as the derivative of the
identity function: V,¢g(z) ~ V,x = 1. Therefore, we can
approximate the derivative of f(g(x)) at the point Z as:

V. f(9(z))|ms = wa(x)lx;q(i')

This allows us to compute gradients and therefore mount a
white-box attack. Conceptually, this attack is simple. We
perform forward propagation through the neural network as
usual, but on the backward pass, we replace g(-) with the
identity function. In practice, the implementation can be ex-
pressed in an even simpler way: we approximate V. f(g(x))
by evaluating V. f(x) at the point g(z). This gives us an
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©)

approximation of the true gradient, and while not perfect, is
sufficiently useful that when averaged over many iterations

of gradient descent still generates an adversarial example.

The math behind the validity of this approach is similar to
the special case.
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e Backward Pass Differentiable Approximation (BPDA)
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Let|f(-) = f%+7(-)|be a neural network, and let f*(-) be a
non-differentiable (or not usefully-differentiable) layer. To
approximate V. f(x), we first find a differentiable approxi-
mation g () such that g(x) ~ f*(x). Then, we can approxi-
mate V. f(x) by performing the forward pass through f(-)
(and in particular, computing a forward pass through f*(x)),
but on the backward pass, replacing f*(z) with g(z). Note
that we perform this replacement only on the backward pass.

Adversarial Examples & Robustness Evaluation



Attack Techniques

e Attack defences where gradients are not readily available

e Backward Pass Differentiable Approximation (BPDA)

Shreyash Arya /

Let f(-) = f'7(-) be a neural network, and let

)

OOlm  UNIVERSITAT

Muwﬂw DES
U  SAARLANDES

be a

non-differentiable (or not usefully-differentiable) Tayer.| To

approximate V. J (&), we nrst 1ind a dilferentiable approxi-
mation g () such that g(x) ~ f*(x). Then, we can approxi-
mate V. f(x) by performing the forward pass through f(-)
(and in particular, computing a forward pass through f*(x)),
but on the backward pass, replacing f*(z) with g(z). Note
that we perform this replacement only on the backward pass.
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Let f(-) = f%+7(-) be a neural network, and let f*(-) be a
non-differentiable (or not usefully-differentiable) layer. To
approximate V. f(x), we first find a differentiable approxi-
mation g () such that g(x) ~ f*(x). Then, we can approxi-
mate V. f(x) by performing the forward pass through f(-)

(and in particular, computing a forward pass through f*(x)),
but on the backward pass, Fep]acing f*(x) with g(x)

. Note

that we perform this replacement only on the backward pass.
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e Attack defences where gradients are not readily available

e Backward Pass Differentiable Approximation (BPDA)

As long as the two functions are similar, we find that the
slightly inaccurate gradients still prove useful in construct-
ing an adversarial example. Applying BPDA often requires
more iterations of gradient descent than without because
each individual gradient descent step 1s not exactly correct.

We have found applying BPDA is often necessary: replacing
f*(-) with g(-) on both the forward and backward pass is
either completely ineffective (e.g. with Song et al. (2018)) or
many times less effective (e.g. with Buckman et al. (2018)).
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e Attack defences where gradients are not readily available

e Attacking randomized classifiers

o Expectation over Transformation (EOT)
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Attack Techniques I

e Attack defences where gradients are not readily available

e Attacking randomized classifiers

o Expectation over Transformation (EOT)

When attacking a classifier f(-) that first randomly trans-
forms its input according to a function #(-) sampled from a
distribution of transformations 7', EOT optimizes the expec-
tation over the transformation E, . f(¢(x)). The optimiza-
tion problem can be solved by gradient descent, noting that
VE;.rf(t(z)) = E;rV f(t(x)), differentiating through
the classifier and transtormation, and approximating the
expectation with samples at each gradient descent step.
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Attack Techniques

e Attack defences where gradients are not readily available

e Solving vanishing/exploding gradients:

o Reparameterization
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Attack Techniques

e Attack defences where gradients are not readily available

e Solving vanishing/exploding gradients:

o Reparameterization
We solve vanishing/exploding gradients by reparameteriza-

tion. Assume we are given a classifier f(g(z)) where g(-)
performs some optimization loop to transform the input z
to a new input Z. Often times, this optimization loop means
that differentiating through ¢(-), while possible, yields ex-
ploding or vanishing gradients.

To resolve this, we make a change-of-variable x = h(2)
for some function h(-) such that g(h(z)) = h(z) for all
z, but h(-) is differentiable. For example, if g(-) projects
samples to some manifold in a specific manner, we might
construct h(z) to return points exclusively on the manifold.
This allows us to compute gradients through f(h(z)) and
thereby circumvent the defense.
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that differentiating through ¢(-), while possible, yields ex-
ploding or vanishing gradients.
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Attack Techniques I

e Attack defences where gradients are not readily available

e Solving vanishing/exploding gradients:

o Reparameterization
We solve vanishing/exploding gradients by reparameteriza-

tion. Assume we are given a classifier f(g(z)) where g(-)
performs some optimization loop to transform the input z
to a new input Z. Often times, this optimization loop means
that differentiating through ¢(-), while possible, yields ex-
ploding or vanishing gradients.

To resolve this, we make a change-of-variable x = h(2)

for some function h(-) such that g(h(z)) = h(z) for all

z, but h(-) is differentiable. For example, if g(-) projects

samples to some manifold in a specific manner, we might

construct h(z) to return points exclusively on the manifold. Remapping!
This allows us to compute gradients through j(A(z)) and

thereby circumvent the defense.
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e |CLR 2018 non-certified defences

o Testing robustness against white-box threat model

o 7 out of 9 depends on obfuscated gradients

There is an asymmetry in attacking defenses versus con-
structing robust defenses: to show a defense can be by-
passed, it is only necessary to demonstrate one way to do
s0; 1n contrast, a defender must show no attack can succeed.
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Defense Dataset Distance Accuracy
Buckman et al. 2018) CIFAR  0.031 (loe) 0%
Ma et al. (2018) CIFAR 0.031 (/=) 5%
Guo et al. (2018) ImageNet  0.005 (£5) 0%
Dhillonetal. 2018)  CIFAR  0.031 (/os) 0%
Xie et al. (2018) ImageNet 0.031 ({oo) 0%
Song et al. (2018) CIFAR 0.031 (=) 9% %
Samangouei et al. MNIST 0.005 (£2)  55%xx
(2018)

Madry et al. (2018) CIFAR 0.031 (ls) 47%
Na et al. (2018) CIFAR 0.015 (£s) 15%

Table 1. Summary of Results: Seven of nine defense techniques
accepted at ICLR 2018 cause obfuscated gradients and are vulner-
able to our attacks. Defenses denoted with * propose combining
adversarial training; we report here the defense alone, see §5 for
full numbers. The fundamental principle behind the defense de-
noted with *x has 0% accuracy; in practice, imperfections cause
the theoretically optimal attack to fail, see §5.4.2 for details.
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e Adversarial training

0" =argmin [ max {(z + 8;y; Fp)
0 (z,y)eX [S€[—€,]N
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e Adversarial training

0" =argmin [ max {(z + 8;y; Fp)
0 (z,y)eX [S€[—€,]N

Discussion. We believe this approach does not cause ob-
fuscated gradients: our experiments with optimization-
based attacks do succeed with some probability (but do
not invalidate the claims in the paper). Further, the authors’
evaluation of this defense performs all of the tests for charac-
teristic behaviors of obfuscated gradients that we list. How-
ever, we note that (1) adversarial retraining has been shown
to be difficult at ImageNet scale (Kurakin et al., 2016b),
and (2) training exclusively on /., adversarial examples
provides only limited robustness to adversarial examples
under other distortion metrics (Sharma & Chen, 2017).
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e Adversarial training

0* =argmin [ max {(x + 0;y; Fp)

e Cascade Adversarial Training
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Cascade adversarial machine learning (Na et al., 2018) is
closely related to the above defense. The main difference
is that instead of using iterative methods to generate ad-
versarial examples at each mini-batch, the authors train a

first model, generate adversarial examples (with iterative
methods) on that model, add these to the training set, and
then train a second model on the augmented dataset only
single-step methods for efficiency. Additionally, the authors

construct a “unified embedding” and enforce that the clean
and adversarial logits are close under some metric.
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e Thermometer encoding

o Breaking the linearity which causes adversarial examples to exist

Given an image z, for each pixel color z; ; ., the [-level ther-
mometer encoding T(x; ; .) is a [-dimensional vector where
7(xi jc)r = 1ifif xz; ;. > k/l, and 0 otherwise (e.g., for
a 10-level thermometer encoding, 7(0.66) = 1111110000).
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e Thermometer encoding

o Breaking the linearity which causes adversarial examples to exist

Given an image z, for each pixel color z; ; ., the [-level ther-
mometer encoding T(x; ; .) is a [-dimensional vector where
7(xi jc)r = 1ifif xz; ;. > k/l, and 0 otherwise (e.g., for
a 10-level thermometer encoding, 7(0.66) = 1111110000).

o Logit-Space Projected Cradient Ascent (LS-PGA) attack on discrete space

e ! Black box performance is worse than white box
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Figure 1. Model accuracy versus distortion (under /). Adversar-
ial training increases robustness to 50% at ¢ = 0.031; thermometer
encoding by itself provides limited value, and when coupled with
adversarial training performs worse than adversarial training alone.
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o Image cropping, rescaling, bit-depth reduction, JPEG compression, total variance minimization

and image quilting
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e Input Transformation
o Image cropping, rescaling, bit-depth reduction, JPEG compression, total variance minimization
and image quilting
o Black box, ResNet-50, |, dissimilarity, 60% top-1 defence accuracy
e Bypass!
o EOT: Image cropping and scaling

o BPDA: Bit-depth reduction, JPEG compression
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o Image cropping, rescaling, bit-depth reduction, JPEG compression, total variance minimization
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o Black box, ResNet-50, |, dissimilarity, 60% top-1 defence accuracy
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o EOT: Image cropping and scaling
o BPDA: Bit-depth reduction, JPEG compression

o EOT + BPDA: total variance minimization and image quilting
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Gradient Shattering I

e Input Transformation
o Image cropping, rescaling, bit-depth reduction, JPEG compression, total variance minimization
and image quilting
o Black box, ResNet-50, |, dissimilarity, 60% top-1 defence accuracy
e Bypass!
o EOT: Image cropping and scaling
o BPDA: Bit-depth reduction, JPEG compression
o EOT + BPDA: total variance minimization and image quilting

m Accuracy drops to 0% under strongest defence with small perturbation budget
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Stochastic Gradients

e Stochastic Activation Pruning (SAP)
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e Stochastic Activation Pruning (SAP)
o Dropout with weighted distribution

o | Used single-step in the gradient direction evaluation

* Attack: randomness. At each iteration of gradient descent, instead
of taking a step in the direction of V. f(z) we move in the
direction of Zle V. f(z) where each invocation is ran-
domized with SAP. We have found that choosing £ = 10
provides useful gradients. We additionally had to resolve
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e Stochastic Activation Pruning (SAP)
o Dropout with weighted distribution

o | Used single-step in the gradient direction evaluation

e Attack: randomness. At each iteration of gradient descent, instead
of taking a step in the direction of V. f(z) we move in the

direction of Zle V. f(z) where each invocation is ran-
domized with SAP. We have found that choosing £ = 10
provides useful gradients. We additionally had to resolve

e Accuracy drop to 9% with € = .015 and 0% at € = 0.031
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e Mitigating Through Randomization

o Adding randomization layer before input to classifier

o Attack on original, fixed randomization and ensemble

o I Claims that stronger attack would be computationally expensive
e Attack:

o EOT optimizing over distribution of transformations
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Stochastic Gradients |-

e Mitigating Through Randomization

o Adding randomization layer before input to classifier

o Attack on original, fixed randomization and ensemble

o I Claims that stronger attack would be computationally expensive
e Attack:

o EOT optimizing over distribution of transformations

e Accuracy drop to 32.8% with € = .0031 under I-infinity norm
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e PixelDefend

o PixelCNN to project potential adversarial example back to data manifold before input
o Argue that adversarial examples lie in low-probability region
m PixelDefend “purifies” image by finding highest probability example in e-ball of input
o With a maximum |_ perturbation of € = 0.031, PixelDefend claims 46% accuracy (with a vanilla
ResNet classifier
o | Dismiss attacks with difficult differentiation due to vanishing gradients and computation cost
e Attack: BPDA to approximate gradient

e Reduce accuracy to 9%
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e Defence-GAN
o Similar to PixelDefend; use of CANs

e Attack with BPDA with 45% success rate
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Guidelines

— For building and evaluating defences
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Guidelines

1. Define a (realistic) threat model
a. Model architecture and model weights
b. Training algorithm and training data
c. Test time randomness (chosen values or distribution)
d. Query access (logits or top label)

e Should not have unrealistic constraints
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2. Make specific, testable claims
a. Accuracy, bound, budget, threat model
b. State if model evaluated under different threat model
c. Coderelease
3. Evaluate against adaptive attacks
a. Future attacks

b. After defence is specified, adversary attacks again with only restriction of threat model
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2. Make specific, testable claims
a. Accuracy, bound, budget, threat model
b. State if model evaluated under different threat model
c. Coderelease
3. Evaluate against adaptive attacks
a. Future attacks
b. After defence is specified, adversary attacks again with only restriction of threat model

c. Multiple attacks evaluation; mean over best attack per image
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Conclusion |-

e Highlight limitations of gradient obfuscation as a standalone mechanism
e Adaptive attacks can break defence mechanisms
e Comprehensive defence strategies
o Adversarial defence, ensemble methods or input preprocessing
e Evaluated different attacks
o Strongest first order attacks have lower success to adaptive attacks

e Cuidelines to improve defence mechanisms

Shreyash Arya ’ Adversarial Examples & Robustness Evaluation



OOlm  UNIVERSITAT
"uﬂuuuw DES
U  SAARLANDES

Limitations

Shreyash Arya Adversarial Examples & Robustness Evaluation




OOlm  UNIVERSITAT
"uﬂuuuw DES
U  SAARLANDES

Limitations

e Experimental scope is limited

Shreyash Arya / Adversarial Examples & Robustness Evaluation



OOlm  UNIVERSITAT

Limitations ]

e Experimental scope is limited

e Dependency on data, model and task

Shreyash Arya / Adversarial Examples & Robustness Evaluation



OOlm  UNIVERSITAT

Limitations ]

e Experimental scope is limited
e Dependency on data, model and task

e Attack complexity can vary depending on task complexity

Shreyash Arya ’ Adversarial Examples & Robustness Evaluation



OOlm  UNIVERSITAT

Limitations ]

e Experimental scope is limited
e Dependency on data, model and task
e Attack complexity can vary depending on task complexity

e Combination and comparison with other attacks is not mentioned

Shreyash Arya ’ Adversarial Examples & Robustness Evaluation



OOlm  UNIVERSITAT

Limitations ]

e Experimental scope is limited

e Dependency on data, model and task

e Attack complexity can vary depending on task complexity

e Combination and comparison with other attacks is not mentioned

e Extensive insights to alternate defences / mitigation strategies not provided
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1. "Stealthy Backdoors as Compression Artifacts" by Liu et al. (2021)

e Explores the use of obfuscated gradients as a way to hide backdoor triggers in deep neural networks
e Demonstrates how attackers can leverage obfuscated gradients to create stealthy backdoors in models

2. "The Limitations of Model-Agnostic Attacks" by Grosse et al. (2019)
e Investigates the limitations of obfuscated gradients and other model-agnostic attacks
e Provides insights into the challenges of crafting effective adversarial examples in scenarios where the attacker

has limited knowledge of the target model

3. "Onthe Robustness of Machine Learning Models to Universal Adversarial Perturbations” by Moosavi-Dezfooli et al.

(2020)
e Explores the vulnerability of machine learning models, including those protected by gradient obfuscation, to

universal adversarial perturbations.
e |Investigates the robustness of models against perturbations that are imperceptible to human perception but

can cause misclassification
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APPENDIX

Shreyash Arya Comparing Rewinding and Fine-tuning in Neural Network Pruning
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Defence

e Adversarial Training

0* =argmin E max {(x + 6;y; Fa)]
¢ (z,y)EX |0€[—e€,e]N

e Cascade Adversarial Training
o Train first model — generate adversarial examples (iterative method) on the model — add to

train set — train second model on augmented dataset (using single step method)
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